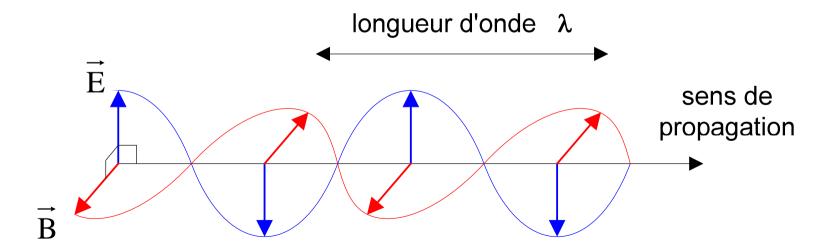


Module d'Optique

1ère partie: Introduction

2^{ème} partie : Optique géométrique

3^{ème} partie : Optique ondulatoire


© Fabrice Sincère (version 3.0.1)

1ère partie Introduction

L'Optique est la partie de la physique qui étudie les propriétés de la lumière.

Chapitre 1 Les ondes électromagnétiques

Les ondes EM sont formées d'un champ électrique **E** et d'un champ magnétique **B** (fig. 1) :

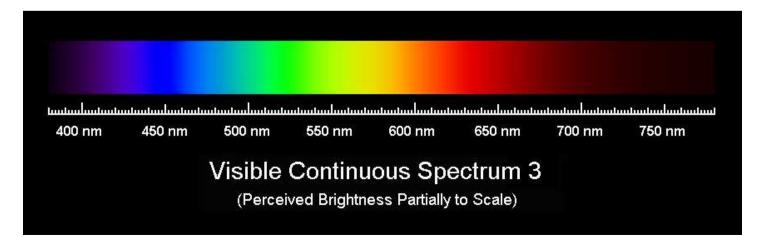
1-1- Caractéristiques d'une onde EM

- fréquence f [Hz]
- célérité (vitesse de propagation) c [m/s]
- longueur d'onde λ [m]
- intensité [W/m²]

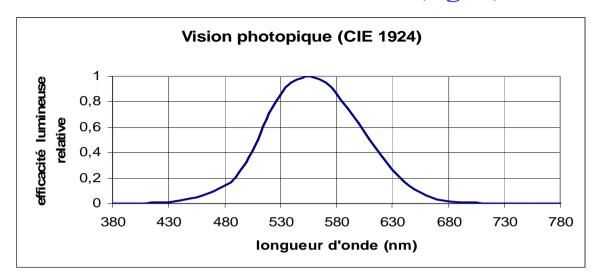
La longueur d'onde est la distance parcourue en une période :

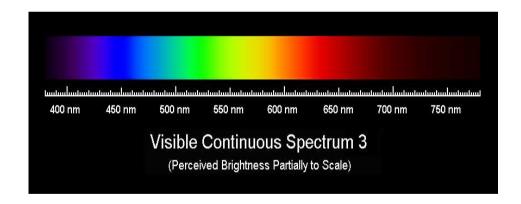
$$\lambda = cT = c/f$$

c et λ dépendent du milieu de propagation :


- dans le vide : $c_0 = 299792458 \text{ m/s} \ (\approx 300000 \text{ km/s})$
- $c \le c_0$
- $\lambda \leq \lambda_0$

1-2- Classification des ondes EM (tableau 1)


Fréquence f	Longueur d'onde λ ₀	Domaine	
< 300 kHz	> 1 km	Basse fréquence : réseau électrique EDF 50 Hz,	
		réseau téléphonique, radio GO	
300 kHz – 3 MHz	1000 m - 100 m	Moyenne fréquence : radio PO	
3 MHz – 30 MHz	100 m - 10 m	Haute fréquence (HF)	
30 MHz – 300 MHz	10 m − 1 m	Très haute fréquence (VHF) : radio FM,	
		télévision	
300 MHz – 3 GHz	100 cm - 10 cm	Ultra haute fréquence (UHF) : télévision,	
		téléphonie mobile, Wifi	
3 GHz – 10 GHz	10 cm - 3 mm	Hyperfréquence (SHF) : radar	
10 GHz – 600 GHz	3 mm - 0.5 mm	Micro-ondes : four à micro-ondes	
$600 \text{GHz} - 4 10^{14} \text{Hz}$	$0.5 \text{ mm} - 0.76 \mu\text{m}$	Infrarouge (IR): rayonnement thermique	
$4\ 10^{14}\ Hz - 7,5\ 10^{14}\ Hz$	0,76 μm – 0,4 μm	Lumière visible : rouge au violet	
$7.5 \ 10^{14} \ Hz - 3 \ 10^{16} \ Hz$	400 nm – 10 nm	Ultraviolet (UV)	
$3 10^{16} \text{ Hz} - 3 10^{20} \text{ Hz}$	$10^{-8} \mathrm{m} - 10^{-12} \mathrm{m}$	Rayons X	
$3 \ 10^{20} \ Hz - 3 \ 10^{22} \ Hz$	$10^{-12} \mathrm{m} - 10^{-14} \mathrm{m}$	Rayons γ (gamma)	
$> 3 \ 10^{22} \text{Hz}$	$< 10^{-14} \mathrm{m}$	Rayons cosmiques	


1-3- Correspondance entre fréquence et couleur (tableau 2)

Fréquence (Hz)	Longueur d'onde λ_0	Couleur
$7,5\cdot 10^{14}$	400 nm	Violet extrême
	420 nm	Violet
	440 nm	Indigo
$6,25\cdot10^{14}$	480 nm	Bleu
,	500 nm	Bleu-Vert
	520 nm	Vert
	560 nm	Vert-Jaune
	580 nm	Jaune
5.10^{14}	600 nm	Orange
	620 nm	Rouge moyen
	650 nm	Rouge
4.10^{14}	760 nm	Rouge extrême

1-4- Courbe de sensibilité de l'œil (fig. 2)

Maximum de sensibilité : 555 nm (vert-jaune)

1-5- Sources de lumière

• Lumière monochromatique

C'est une lumière composée d'une seule longueur d'onde.

Ex.: Laser

Lampe à vapeur de sodium ...

• Lumière polychromatique

C'est un mélange de lumières monochromatiques.

Ex.: Lumière blanche (lumière du jour, ampoule ...)
Soleil, LED ...

1-6- Indice de réfraction d'un milieu transparent

Définition : $n = c_0/c$

- Indice de réfraction du vide : $n_0 = 1$
- $n \ge 1$
- $n_{air} \approx 1,000 \ 3$
- n_{verre}: 1,5 à 1,9

• n (λ) : l'indice de réfraction dépend de la couleur (sauf dans le vide)

Remarque : $\lambda = \lambda_0 / n$

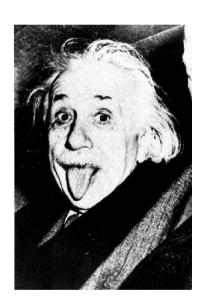
•
$$\lambda_{\text{air}} \approx \lambda_0$$

• Laser He-Ne : $\lambda_{air} = 632.8$ nm (rouge)

$$\lambda_{\text{eau}} = 632,8/1,331 = 475 \text{ nm (rouge)}$$

Chapitre 2 Théorie corpusculaire de la lumière

La lumière est constituée de particules élémentaires :


les photons (Einstein 1905)

Propriétés du photon :

- masse nulle
- vitesse de la lumière
- énergie : $\mathbf{E} = \mathbf{hf}$

$$h \approx 6.62 \cdot 10^{-34} \,\text{J} \cdot \text{s}$$

(constante de Planck)

